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conclusions are very much the same. Clausius—Mossotti
effects, i.e., the removal of the dipole~dipole on-site inter-
action, are implicitly included when we consider the energy
bands of the solid.

IV. CONCLUSIONS

Clausius—-Mossotti effects in dielectrics arise when we
take into account the fact that the polarizable centers of the
solid do not see their own field. When the polarizable
centers are located with cubic symmetry, the local field at a
given site of the lattice produced by the rest of the system is
exactly the same as the average over the unit cell of that
field. Thus the difference between these two fields produces
no extra contribution to the Clausius—Mossotti effect.

In a quantum mechanical treatment for crystalline sol-
ids, the removal of the dipole—dipole on-site interaction is
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automatically taken into account if we consider the energy
gap of the solid rather than the atomic energy gap.
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A short derivation of the Kramers—Kronig relations is presented.

The Kramers-Kronig relations relate the real and imagi-
nary parts of the frequency-dependent linear response
function y(w),

Im{y()] = —ipfdw'l‘e—[,l(i)l (1a)
s w —w
Rely()] =iPde' Imly(@)] (1b)
T @ — @

where P means principal part. These relations are a conse-
quence of causality and have found applications in many
branches of physics, ranging from electrical network theo-
ry to elementary particle theory. The traditional method of
proving these relations is to continue y (@) to complex fre-
quencies and then to exploit its analyticity in the upper half
o plane.’” More elementary but slightly lengthier ap-
proaches can also be used to obtain these relations.® The
purpose of this article is to present a derivation of the
Kramers-Kronig relations that is both quick and simple.

The prerequisites for the derivation are two well-known
results. The first is that the Fourier transform of the step
function,

1, >0

o(1) = {
® 0, t<0,
is given by*

f dt 0(t)e™ = lim J

e~0* @ + i€

=Pl + 78(w). (2)
@
The second is the Fourier transform convolution theorem5

f dt e FDg(r) = f %";'f(w—w')g(w'). (3)
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Because of causality, the response function ,{/(t) must
have the form

X =6(¥0), (4)

where 3’(t) = )A((t) for > 0. We are free to choose Y(t) for
¢t <0. On Fourier transforming Eq. (4) and using Eq. (2)
and the convolution theorem, we obtain

) =_1__Pfiy(w')’da)’+ Yw) (5)
27 00— 2

Now we exploit our freedom to choose ¥ () fort <0.

(i) Choose Y( — |t|) = Y(|t|). Then ¥(w) is pure real,
and, hence, Eq. (5) gives Y(w) = (2)Re[y (@) ]. Substi-
tuting this into the integrand in Eq. (5) yields Eq. (1a).

(ii) Choose Y( — |t|) = — Y(|t|). Then Y(w) is pure
imaginary, and, hence, Eq. (5) gives
i¥Y(o) = — (2)Im[y(w)]. Substituting this into the inte-
grand in Eq. (5) yields Eq. (1b).
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